Insect pollination networks of central Alaskan native plants in the presence of invasive white sweetclover

Laura Schneller, Matthew L. Carlson University of Alaska Anchorage

Boreal forest ecology

Boreal forest ecology

- Generalist plants
- Depend on a variety of pollinators

Network studies

Connectance:

Realized links/possible links

Links/Species:

Mean links/species

Cluster Coefficient:

Average across network of realized links/possible links

Nestedness:

Measure of chaos in links (0 = perfectly nested, 100 = perfect chaos)

Plant-pollinator network question

• How does the plant-pollinator network change in boreal Alaska with the invasion of *M. albus*?

Predictions

- The native plant-pollinator networks will be less connected, with lower nestedness and fewer connections per node, in the presence of *M. albus*
- Pollinator visitation rates to native plants will decrease in the presence of *M. albus*

Unmanipulated Sites

- 10 site-pairs on the Dalton Highway
- One *M. albus* site and one non-*M. albus* site in each site-pair, approximately 300 m apart

Unmanipulated Sites

• 2 plots, roadside and nonroadside 10 m x 10 m each

- Video Cameras:
 - 4 Cameras
 - 30 minutes per video
 - 2 videos/site/camera

Video camera sample

Unmanipulated Sites

Unmanipulated site network (without *M. albu*s)

Video observations of sites without *M*. *albus*:

$$C = 0.429$$

$$L/S = 1.250$$

$$CC = 0.600$$

$$N = 7.752$$

Unmanipulated site network (with *M. albus*)

Video observations of sites with *M*. *albus*:

C = 0.404

L/S = 1.307

CC = 0.500

N = 10.588

Network parameters Unmanipulated sites

Video observations of sites without M. albus (C = 0.429, L/S = 1.250, CC = 0.600, N = 7.752)

Video observations of sites with M. albus (C = 0.404, L/S = 1.308, CC = 0.500, N = 10.588)

(*M. albus* removed from calculations: C = 0.371, L/S = 1.083, CC = 0.400, N = 6.459)

Pollinator visitation rates Unmanipulated sites

Pollinator visitation rates to native plants at unmanipulated sites with and without M. albus present. Error bars = \pm /- 1 S.E. (1 Outlier removed)

Variables that influence pollinator visitation at unmanipulated sites

Variable importance plot of variables influencing likelihood of visitation at experimental sites.

Key to variables

Pflower: Number of flowers in 1 m² plot around camera

Fflower: Number of flowers in camera frame

Temp: Air temperature

Lat: Site latitude

Plant: Focal plant species

Long: Site longitude

Time: Time of day

Mel: *M. albus* patch size

Roadside: Camera distance from road edge (0 m or 10 m)

How do the individual variables influence pollinator visitation?

Partial dependence plot of the influence of number of flowers in a 1 m² plot around camera on likelihood of pollinator visitation to native plants at unmanipulated sites.

How do the individual variables influence pollinator visitation?

Partial dependence plot of the influence of *M. albus* patch size on likelihood of pollinator visitation to native plants at unmanipulated sites.

Insect families collected during observations (unmanipulated sites)

	<i>M. Albus</i> present	<i>M. Albus</i> absent
Apidae		X
Apidae - <i>Bombus</i>	X	X
Megachilidae	X	X
Vespidae	X	
Bombyliidae	X	X
Calliphoridae	X	
Muscidae	X	
Sarcophagidae	X	
Syrphidae	X	X
Tachinidae	X	
Lepidoptera	X	X

Experimental sites

Experimental Sites

Plant-pollinator network Control sites

Video observations of sites without added *M. albus*

$$C = 0.214$$

L/S = 0.333

$$CC = 0.000$$

$$N = 1.626$$
)

Plant-pollinator network *M.albus* addition sites

Video observations of sites with added *M*. *albus*. (Calculations without *M*. *albus*.)

$$C = 0.423$$

 $L/S = 0.667$
 $CC = 0.500$
 $N = 9.181$

Network parameters Experimental sites

Video observations of sites without added M. albus (C = 0.214, L/S = 0.333, CC = 0.000, N = 1.626)

Video observations of sites with added M. albus (Calculations without M. albus: C = 0.423, L/S = 0.667, CC = 0.500, N = 9.181)

Pollinator visitation rates Experimental sites

Pollinator visitation rates to native plants at manipulated sites with added M. albus and control sites. Error bars = \pm 1 S.E.

Variables that influence pollinator visitation at experimental sites

Variable importance plot of variables influencing likelihood of visitation at experimental sites.

Key to variables

Pflower: Number of flowers in 1 m² plot around camera

Fflower: Number of flowers in camera frame

Orbit: Distance from *M. albus* addition/center of site

Plant: Focal plant species

Lat: Site latitude

Temp: Air temperature

Long: Site longitude

Time: Time of day

Mel: *M. albus* presence or

absence

How do the individual variables influence pollinator visitation?

Partial dependence plot of the influence of number of flowers in a 1 m² plot around camera on likelihood of pollinator visitation to native plants at unmanipulated sites.

Conclusions

- In each network, presence of *M. albus* appears to affect plant-pollinator interactions.
 - Connectance, links/species, cluster coefficient, and nestedness all change in the networks in the presence of *M. albus*, but in opposite directions in each type of site (unmanipulated vs. experimental).
- Variable importance plot explores relative importance of *M. albus* to other variables, and shows it is less important for predicting visitation.
- Number of flowers around camera and in the camera frame are the most importance variables in determining whether a specific plant will be visited by a pollinator.
- This has a potential effect on incipient *M. albus* populations, potentially giving them pollinator competition from already established native plants.
- Incipient *M. albus* populations may also help bolster existing pollinator populations, leading to the suggestion of more pollinator visitation to native plants in the presence of *M. albus*.

Acknowledgements

Committee: M. Carlson, C. Mulder, D. Causey

Other Assistance: K. Spellman, D. Sikes, B. Sveinbjornsson, A. Kulmatiski

Lab and Field Assistance: J. Mathot, L. Ponchione, T. Saunders

Lab Assistance: J. Conn, S. Seefeldt

Research Support: USDA, the Alaska Natural Heritage Program, EPSCoR, LGL Alaska, and the University of Alaska Anchorage

