Glocianus punctiger (Sahlberg, 1835) (Coleoptera: Curculionidae) common in Soldotna

by Matt Bowser

Glocianus punctiger (Sahlberg, 1835), an exotic weevil of Palearctic origin, has been known in Alaska from two specimens in the University of Alaska Museum Entomology collection: UAM:Ento:24180 from Fairbanks and UAM:Ento:113229 from Anchorage. These specimens, identified by C. W. O’Brien, are the basis of the Alaska record of G. punctiger in Bousquet et al. (2013). Larvae of G. punctiger feed on floral and seed tissues of common dandelions (Taraxacum officinale F.H. Wigg.), also exotic to Alaska.

On June 10–11, 2015, I observed larvae in inflorescences of T. officinale at two localities in Soldotna. The larvae were quite common in inflorescences when seeds were maturing, after the petals had fallen and before the inflorescences reopened to release the wind-dispersed seeds. From the back lawn of the Kenai National Wildlife Refuge’s headquarters building (60.465°N, 151.073°W) on June 11 I collected a handful of inflorescences at the seed maturation stage and placed them in a jar of water, arranging them so that the flowers were positioned over a plate. The larvae had dropped out of the flowers onto the plate by June 15. I placed the larvae in a jar of soil, where they quickly burrowed into the substrate. Twelve adults had eclosed between July 2 and July 6. These specimens now reside in the Kenai National Wildlife Refuge’s entomology collection (KNWR:Ento:10799–KNWR:Ento:10810).

Figure 1: Larvae of Glocianus punctiger in inflorescence of T. officinale, June 10, 2015 (http://www.inaturalist.org/observations/1620773).

It is unlikely that the presence of G. punctiger in Alaska will meaningfully reduce the spread and persistence of common dandelions. The abundance of G. punctiger tends to be lower at high latitudes than at lower latitudes (Verhoeven and Biere, 2013). Even where G. punctiger is more abundant, the larvae consume only a small proportion of the plants’ total seed production (McAvoy et al., 1983; Honek and Martinkova, 2005). Adults also consume dandelion foliage, but they cause little damage (McAvoy et al., 1983). With exceptions of the aphid Myzus persicae (Sulzer, 1776) and the slug Deroceras reticulatum (O. F. Müller, 1774), most of the other known herbivores of T. officinale listed by Stewart-Wade et al. (2002) appear to be absent from Alaska.

Figure 2: Glocianus punctiger specimen KNWR:Ento:10806, lateral view.

1 US Fish & Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, Matt_Bowser@gov

http://www.akentsoc.org/newsletter.php
I wonder if *G. punctiger* is breeding in any of Alaska’s native dandelion species. In particular, I would like to know if horned dandelions (*Taraxacum ceratophorum* (Ledeb.) DC.) are affected. This species has seldom been collected on the lowlands of the western Kenai Peninsula. I know of only three records: a dot on the map in the Niskiski area in *Hultén* (1968), one specimen in the Kenai National Wildlife Refuge’s herbarium from Skilak Lake collected in 1951 (<KNWR:Herb:573>, and a specimen held by the Pratt Museum in Homer with label data as follows:

Locality AK; Kenai Borough; Ninilchik; 1200 Rd., 18 mile

Date 7/15/96

Habitat area above and adjacent to muskeg, abundant microrelief

Associated Species *Cladina stellaris*, *Vaccinium caespitosum*, *Pleurozium schreberi*

Collected By Chris Reidy

If *T. ceratophorum* should be a species of conservation concern here, then it seems likely that genetic assimilation by *T. officinale* (see *Brock*, 2004) would be more of a threat to this species than seed consumption by *G. punctiger*. Still, I would like to know if *G. punctiger* feeds on *T. ceratophorum* or any of Alaska’s other *Taraxacum* species.

I thank Savanna Bradley of the Pratt Museum for locating and photographing the *T. ceratophorum* specimen. Derek Sikes (University of Alaska Museum) and Matt Carlson (Alaska Center for Conservation Science) provided helpful comments on this note.

References

Figure 3: Larva of *G. punctiger* in inflorescence of *T. officinale*, June 11, 2015 (http://www.inaturalist.org/observations/1620902).